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1. Introduction

1.1. Motivation

Sheaves on manifolds are an important tool in geometric representation theory. For 
example, highest weight representations of a complex reductive Lie algebra can be de-
scribed in terms of perverse sheaves on a flag manifold and representations of a reductive 
algebraic group correspond to equivariant perverse sheaves on an affine Grassmannian.

More refined formalisms of sheaves carry an additional notion of weights and a Tate 
twist functor that, in a very rough sense, provide an additional grading on the cat-
egory. For example, mixed Hodge modules and mixed �-adic sheaves have a notion 
of weights via Hodge structures and eigenvalues of the Frobenius, respectively. These 
have been put to great use in geometric representation theory. To name just two 
examples, the proof of the Kazhdan–Lusztig conjectures crucially depends on the de-
composition theorem for perverse sheaves for which weight considerations are essential 
while Beilinson–Ginzburg–Soergel’s Koszul duality for flag varieties relies on an addi-
tional grading provided by weights.

However, mixed Hodge modules and mixed �-adic sheaves have several drawbacks: 
first, they have characteristic zero coefficients and are hence not applicable in modular 
representation theory. Second, there are unwanted extensions between Tate objects which 
bear no representation-theoretic significance and yield technical problems. Third, the 
choice of a fixed cohomology theory leaves open the question to which extent the resulting 
categories are independent of the coefficients or base field.

The goal of this paper is to introduce a formalism of mixed sheaves, say Dmix, that 
overcomes these problems. In particular, our proposed formalism works with (almost) 
arbitrary coefficients, carries a six functor formalism and has no extension of Tate objects. 
Under appropriate assumptions, it is moreover independent of the base and specializes
to the existing approaches to categories of mixed sheaves in the literature.

1.2. Reduced motives

A natural candidate for a category Dmix of mixed sheaves is the derived category of 
motivic sheaves DM recalled in Section 2.2. It provides a universal home for cohomology 
and specializes to other formalisms of (mixed) sheaves. Building on that we define the 
category of reduced motives in Section 3.1 as

DMr(X)Λ := DM(X) ⊗DTM(S) grModΛ.

Here X is a scheme or an ind-scheme of finite-type over a general base scheme S such as 
S = SpecZ and Λ is any coefficient ring. The above definition, which requires using ∞-
categories, implements the idea that reduced motives are motives modulo the cohomology 
of the base S. This results in independence of S and removes unwanted extensions 
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between Tate motives Λ(n). We prove in Section 3.2 that there is a six functor formalism 
for DMr compatible with the natural reduction functor r : DM → DMr.

1.3. Stratified Tate motives

For applications in geometric representation theory, we restrict our attention to more 
particular spaces and sheaves in Section 4. We consider (ind-)schemes X equipped with 
a well-behaved cellular stratification ι : X+ → X into strata of the form An

S×Gm
m,S . Our 

proposal for a formalism of mixed sheaves Dmix(X) on such spaces is the subcategory of 
reduced stratified Tate motives

DTMr(X,X+) ⊂ DMr(X)

which are roughly those motives that are constant along the stratification. In partic-
ular, a reduced Tate motive on An

S is just a Z-graded complex of Λ-modules (up to 
quasi-isomorphism): DTMr(An

S) = grModΛ. Thus, reduced Tate motives have a strongly 
combinatorial flavor.

Reduced stratified Tate motives admit a perverse t-structure and a Chow weight 
structure. The heart of the t-structure, denoted by MTMr(X, X+), can be considered 
an Abelian category of mixed perverse sheaves. The homotopy category of the heart of 
the weight structure, denoted by Ho(DTMr(X, X+)w=0), is the additive category of pure 
complexes and is, in many examples, generated by motives of resolutions of the stratum 
closures. We will show that both hearts completely determine DTMr(X, X+).

Theorem 1.1. (Proposition 4.16, Proposition 4.24) Under appropriate assumptions on 
the stratification, there are equivalences of categories

Db(MTMr(X,X+)c) → DTMr(X,X+)c → Chb(Ho(DTMr(X,X+)c,w=0)),

where the superscript c indicates that we consider compact objects and Ho denotes the 
homotopy category.

1.4. Comparison results

In Section 5 we prove that reduced Tate motives refine and interpolate between various 
categories of mixed sheaves found in the literature.

Theorem 1.2. Let (X, X+) be an (ind-)scheme over S with a well-behaved cellular strat-
ification. Depending on S and the coefficient ring Λ, the category DTMr(X, X+) is 
equivalent to the following categories:
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(1) The category of (unreduced) stratified Tate motives DTM(X, X+) in case S =
SpecFpn and Λ = Q or Λ = Fp (cf. Soergel–Wendt [54] for Λ = Q and Eberhardt–
Kelly [27] for Λ = Fp), see Proposition 5.3.

(2) Achar–Riche’s mixed derived category DAR
mix(Xan) [7] which is the category of chain 

complexes of parity sheaves Par(Xan, X+) [34] in case that S = SpecC, Λ is a 
principal ideal domain and all strata of X are affine spaces, see Proposition 5.11.

(3) Soergel–Wendt’s category DTMH(X, X+) of semisimplified Hodge motives [54] in 
case S = SpecC and Λ = C, see Proposition 5.6.

(4) Ho–Li’s category of graded sheaves [31] (more precisely, the Tate objects therein) in 
case S = SpecFq and Λ = Q�, see Proposition 5.7.

Note that—unlike reduced (stratified Tate) motives—all the above theories are fixed 
to specific base schemes S and, except for DAR

mix, also to a specific coefficient ring Λ. By 
contrast, under certain mild conditions, reduced stratified Tate motives over different 
base schemes S are equivalent (Proposition 4.25). This implies the equivalence of the 
above theories, whenever the coefficient ring agrees.

An advantage of reduced stratified motives over the category DAR
mix, which is the only 

one with integral coefficients so far, is the full-fledged six functor formalism. By compari-
son, Achar–Riche’s construction via chain complexes of parity sheaves offers only certain 
functors constructed by hand in [7].

1.5. Examples in geometric representation theory

Our formalism applies to various spaces used in geometric representation theory, such 
as (affine) partial flag varieties.

Our running example is the flag variety X = G/B of a split reductive group G with 
Borel subgroup B ⊂ G which has an affine stratification X+ by B-orbits. Let C = S/SW

+
be the coinvariant algebra, where S = Sym(X(T )Λ) denotes the symmetric algebra of 
the character lattice of the maximal torus T ⊂ B. Assume that the torsion index of G
(for example 1 in type An, Cn or 2 in type Bn, Dn) is invertible in Λ. Then the category 
of reduced stratified Tate motives is equivalent to the category of complexes of graded 
Soergel modules

DTMr(X,X+)c ∼= Chb(grSModC).

This immediately follows from the comparison in Proposition 5.11 and the corresponding 
proof of Soergel’s Erweiterungssatz in the literature, see [49,6]. From this, we obtain the 
following diagram whose horizontal arrows just change the ring of coefficients:

DTMr(X,X+)cC DTMr(X,X+)cZ DTMr(X,X+)cFp

Db(OZ
0 (gL)) Db(OZ(GL)).

� �
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It relates reduced stratified Tate motives to the graded principal block of category O
of the Langlands dual complex Lie algebra gL/C, see [48,14] and the graded modular 
category O of the Langlands dual group GL/Fp, see [49], where we assume that p is 
bigger than the Coxeter number of G.

A very similar picture arises for reduced stratified Tate motives on the affine Grass-
mannian GrG with its stratification by Iwahori-orbits. For Λ = C, it yields the de-
rived graded principal block of finite dimensional representations of the quantum group 
Uq(gL/C) at an odd root of unity, see [1]. For Λ = Fp, one obtains the derived graded 
principal block of algebraic representations of the algebraic group GL/Fp which amounts 
to a graded version of the Finkelberg–Mirković conjecture, see [5,41,8].

1.6. Further directions

1.6.1. Realization functor
One conspicuous omission in the list of properties above is a realization functor, say 

for X/C,

DTMr(X,X+) ?→ D(Xan,Λ).

Such a functor does exist for Λ = C (Proposition 5.5), but its existence for Λ = Z or Fp

depends strongly on the way the strata in X are glued together. Building upon [46], Cass, 
van den Hove and Scholbach have proven an integral motivic Satake equivalence. As a 
nontrivial consequence thereof, they showed that such a realization functor does exist 
for the abelian category MTMr(L+G\ GrG) of L+G-equivariant reduced Tate motives 
on the affine Grassmannian (stratified along the L+G-orbits) [21, §6]. In upcoming work, 
we plan to investigate more systematically both this topic as well as the related question 
how to “unreduce” reduced motives. A concrete question in this direction is the following:

Question 1.3. Let X be the flag variety with the B-orbit stratification. Is there an equiv-
alence

DTM(X,X+) ?= DTMr(X,X+) ⊗grModΛ DTM(S)?

An affirmative answer to this question and similarly for affine flag varieties would 
seem to pave a way towards a solution of the Finkelberg–Mirković conjecture via its 
graded version from [5,41,8], see [55, Remark 2.13(3)].

1.6.2. Equivariant (K-)motives
An extension of our formalism to equivariant motives has been performed in [21]. 

This will be useful in motivic Springer theory [28]. Moreover, it paves the way to study 
equivariant K-motives on flag varieties, the affine Grassmannian and the nilpotent cone 
which, conjecturally, yield an ungraded equivariant Koszul duality, see [24,26], a derived 
quantum K-theoretic Satake, see [20], and a K-theoretic motivic Springer theory.
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For example, denote by N the nilpotent cone of a split reductive group G. Then, 
certain reduced equivariant K-motives (motives) on N should yield the (graded) perfect 
derived category of the (graded) affine Hecke algebra H (resp. H).

Conjecture 1.4. There are equivalences of categories

DMSpr
r (N/(G× Gm)) ∼= grPerfH and DKSpr

r (N/(G× Gm)) ∼= PerfH.

In light of Proposition 5.3, the conjecture is a refinement of [25, Theorem 1.3] where 
a similar statement is shown for DMSpr(NFp

/(G × Gm))Q.
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2. Recollections

In this section we recall some notions related to ∞-categories, as well as a coherent 
formulation for the six functor formalism for motives, and a description of Tate motives 
as modules over a graded E∞-ring spectrum.

2.1. Categorical generalities

2.1.1. ∞-Categories
Concerning ∞-categories, we use the standard terminology of [38,39]. Thus, PrSt de-

notes the ∞-category of stable presentable ∞-categories and colimit-preserving functors. 
This category is endowed with the Lurie tensor product [39, 4.8.2.10, 4.8.2.18], with the 
monoidal unit being the category Sp of spectra. For any C ∈ PrSt, and c, d ∈ C, there 
is a mapping spectrum of maps from c to d, denoted by MapsC(c, d). We denote the 
homotopy category of an ∞-category C by Ho(C). The hom-sets in this category are 
denoted by HomHo(C) or just HomC .

Throughout we write ModA(C) for the ∞-category of A-modules, for any commutative 
algebra object A ∈ CAlg(C), for any symmetric monoidal ∞-category C. For A ∈
CAlg(PrSt), the category ModA(PrSt) is a symmetric monoidal ∞-category with tensor 
product denoted by − ⊗A − [39, 4.5.2.1]. The ∞-category of chain complexes of Λ-
modules (for a commutative ring Λ) up to quasi-isomorphism is denoted ModΛ [39, 
1.3.5.8]. The homotopy category Ho(ModΛ) is the classical unbounded derived category 
of Λ-modules. For C ∈ PrSt, we denote the subcategory consisting of compact objects by 
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Cc. For example, Modc
Λ is the ∞-category of perfect complexes of Λ-modules, denoted 

PerfΛ. By default, all functors are functors of ∞-categories, and therefore correspond to 
derived functors on the associated homotopy categories. This applies in particular to the 
tensor product, so that expressions such as M ⊗Λ N denote the derived tensor product 
(traditionally denoted by M ⊗L

Λ N), even if M and N are ordinary Λ-modules.
We write PrSt

Λ := ModΛ(PrSt) for the ∞-category of presentable stable Λ-linear cat-
egories. As an example of the tensor product mentioned above, we have ModR ⊗ModΛ

ModS = ModR⊗ΛS for any two Λ-algebras, see e.g. [17, Proposition 4.1].
Given a commutative monoid A ∈ CAlg(PrSt), any (stable presentable) ∞-category 

acted upon by A, i.e., any C ∈ ModA(PrSt) is canonically enriched over A: we define the 
enriched mapping object Maps

C
(c, d) to be the object (in A) representing the functor 

Aop → Sp, a �→ MapsC(a ⊗ c, d), i.e., satisfying

MapsA(a,Maps
C

(c, d)) = MapsC(a⊗ c, d).

Lemma 2.1. Let A ∈ CAlg(PrSt) be rigid. Let

L : C � C ′ : R

be an adjunction with L being a map in ModA(PrSt), i.e., an A-linear colimit-preserving 
functor. Assume that R also preserves colimits. Then R, which a priori is only a lax 
A-linear functor, is in fact A-linear. Moreover, for any D ∈ ModA(PrSt), there is an 
adjunction (with the obvious (co)unit maps)

L⊗A idD : C ⊗A D � C ′ ⊗A D : R⊗A idD.

Proof. The first claim is [29, Chapter I, Lemma 9.3.6] or [18, Lemma 3.5]. Thus the 
expression R⊗A idD makes sense to begin with. The claim about the adjunction L ⊗idD 	
R ⊗ idD holds by the characterization of adjunctions in terms of the triangle identities 
[47, Digression 2.1.2]. �

Recall that the lax limit of a functor f : C → C ′ in PrSt, denoted laxlim(C f→ C ′), 
can be defined as the pullback (in PrSt) of the following diagram:

Fun(Δ1, C ′)

ev1

C
f

C ′.

(2.1)

Thus, an object in laxlim f is a triple (c ∈ C, c′1 → c′2 ∈ C ′, α : f(c) ∼= c′2). Under an 
equivalence of categories, objects in laxlim f can be described as triples (c, c′, c′ → f(c)), 
where the map is arbitrary (not necessarily an isomorphism).
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Lemma 2.2. Let f : C → C ′ be a map in ModA(PrSt), for some commutative algebra 
object A ∈ CAlg(PrSt). Then laxlim f is naturally also an object in ModA(PrSt). More-
over, if A is rigid and B is an A-module that is compactly generated (more generally, 
dualizable in PrSt, i.e., disregarding the A-action), then

(laxlim f) ⊗A B = laxlim(C ⊗A B
f⊗idB−→ C ′ ⊗A B).

Proof. The A-module structure on laxlim f arises since both maps in (2.1) are A-
linear, and since the forgetful functor ModA(PrSt) → PrSt preserves limits. We now 
use the following generalities [29, Chapter 1, 4.1.6, 7.3.2, 9.4.4]: if A is rigid, dualizabil-
ity in ModA(PrSt) is equivalent to being dualizable in PrSt. In addition, any compactly 
generated category is dualizable in PrSt. By dualizability of B (over A) we also have 
Fun(Δ1, C ′) ⊗AB = Fun(Δ1, C ′⊗AB). Then, use that tensoring with dualizable objects 
preserves limits since − ⊗A B = FunA(B∨, −), i.e., tensoring with B is equivalent to 
considering the category of A-linear functors (within PrSt) out of the (A-linear) dual of 
B. �
2.1.2. Graded objects

Definition 2.3. For a stable ∞-category C, write grC for the category of Z-graded objects 
in C, i.e., grC := Fun(Z, C), where here Z is regarded as a discrete category. We write

(−)r := evr : grC → C

for evaluation at graded degree r, i.e., precomposition with {r} → Z. We also let

〈r〉 : grC → grC

be the precomposition with Z → Z, m �→ m + r. Thus it shifts the grading by r, i.e., 
(X〈r〉)m = Xm+r.

Remark 2.4. The functor evr has a right and a left adjoint. These two adjoints agree 
(since C is pointed) and are given by C → grC, X �→ (. . . , 0, X, 0, . . . ), (insert X in 
degree r and the zero object elsewhere).

We will usually not distinguish between an object X ∈ C and the same object, re-
garded as being concentrated in graded degree 0. For example, for X ∈ C, the above 
graded object will be denoted by X〈−r〉.

Remark 2.5. If C is symmetric monoidal, then so is grC by means of the Day convolution 
product, with respect to the symmetric monoidal structure on Z given by addition. 
In particular grModΛ := gr(ModΛ) is a commutative algebra object in PrSt. We will 
denote by grPrSt

Λ := ModgrModΛ(PrSt) its category of modules, i.e., the ∞-category of 
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presentable stable Λ-linear and Z-graded ∞-categories (with functors preserving these 
structures).

The functor 〈0〉 : C → grC is symmetric monoidal. In particular, the monoidal unit 
of grC is given by 1〈0〉. Thus, its (right and left) adjoint ev0 is symmetric lax monoidal 
(and symmetric oplax monoidal, but not symmetric monoidal: ev0((An) ⊗ (Bn)) =⊕

a+b=0 Aa ⊗Bb �= A0 ⊗B0.)

2.1.3. T- and weight structures
We briefly recall weight structures and t-structures, since the category of reduced 

stratified Tate motives enjoy both these structures. The definitions are very similar, so 
let ε := +1 in case of a t-structure, and ε := −1 for a weight structure. A t-structure
(resp., a weight structure) on a stable ∞-category C is a pair of full idempotent closed 
subcategories (C≥0, C≤0) such that the following conditions hold.

(1) for each object c ∈ C there is a fiber sequence, with c≤0 ∈ C≤0, c≥0 ∈ C≥1,

c≤0 → c → c≥0[−ε],

(2) The subcategories C≤0 (resp. C≥0) are stable under shifts by [ε] (resp. [−ε]). (Thus, 
we are using a cohomological convention for t-structures and a homological for weight 
structures.)

(3) for c≤0 ∈ C≤0 and c≥0 ∈ C≥0 the mapping spectra satisfy

HomHo(C)(c≤0, c≥0[−ε]) = π0 MapsC(c≤0, c≥0[−ε]) = 0.

In the presence of (1), the last condition is equivalent to

HomHo(C)(c≤0, c≥0[−n]) = 0 for all n ∈ Z with εn > 0.

Weight structures on ∞-categories were introduced in [50]; the notion is due to Bon-
darko [15] and Pauksztello [43] in the context of triangulated categories. Note that we 
use the cohomological convention for t-structures and homological convention for weight 
structures here.

The heart of a weight-structure or t-structure is the full subcategory C=0 := C≤0 ∩
C≥0 ⊂ C. It is an additive ∞-category for weight structures, and an abelian category 
for t-structures. We indicate the aisles and the heart of a weight structure also by Cw≤0, 
Cw=0, and the ones of a t-structure by Ct≤0, Ct=0 etc.

A functor between two such categories with weight (or t-)structures is weight- (or 
t-)exact if it preserves the two given subcategories.

For a bounded weight structure w on a stable ∞-category C (i.e., such that ⋃
n∈Z Cw≥0[n] = C =

⋃
n∈Z C≤0[n]), there is an essentially unique exact functor, called 

weight complex functor,
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C → Chb(Ho(Cw=0))

that restricts to the identity on Cw=0 [50, Corollary 3.0.4]. Here the target category is 
the ∞-category underlying the dg-category formed by bounded complexes in the additive 
category Ho(Cw=0).

Similarly, if (Ct≤0, Ct≥0) is a t-structure, there is a unique exact functor (up to equiv-
alence), called realization functor,

Db(Ct=0) → C (2.2)

whose restriction to Ct=0 is the identity [13, Remark 7.60].
Weight structures can be extended to ind-completed categories by means of the fol-

lowing lemma, which is due to Bondarko (in the setting of triangulated categories; the 
translation to stable ∞-categories is routine).

Lemma 2.6. [16, Theorem 4.1.2] Let C be an essentially small stable ∞-category with a 
weight structure.

(1) Its Ind-completion IndC (cf. [39, Proposition 1.1.3.6]) carries a weight structure 
such that (IndC)w≥0 (resp. (IndC)w≤0) is the smallest full subcategory containing 
Cw=0, and stable under coproducts, extensions and shifts [+1] (resp. [−1]).

(2) The heart (IndC)w=0 is the smallest full subcategory of Ind(Cw=0) containing Cw=0

and arbitrary coproducts.
(3) A functor IndC → D taking values in a stable ∞-category with a weight structure 

is weight exact iff its restriction to C is so.

Example 2.7. The category ModΛ = Ind(PerfΛ) has its natural t-structure whose heart 
is the usual category of Λ-modules. The t-structure restricts to one on PerfΛ iff Λ is a 
regular coherent ring [33, Proposition 6.6], for example a regular Noetherian ring. The 
category PerfΛ also has a weight structure whose heart is the (additive) category of 
finitely generated projective Λ-modules [50, Example 3.1.6]. It gives a weight structure 
on ModΛ by ind-extension as in Lemma 2.6.

The category grModΛ has a t-structure and weight-structure such that the evaluation 
functors evn : grModΛ → ModΛ are t- and weight exact. (Thus, the graded degree does 
not affect the t- or weight degree of an object.)

2.2. Motivic sheaves

Convention 2.8. Throughout the entire paper, we fix a scheme S that is supposed to be 
connected, smooth and of finite type over SpecO, where O is a field or a Dedekind ring. 
(Thus, S is itself regular, Noetherian and of finite Krull dimension; in practice we only 
care about the case S = SpecO itself.) The category Schft

S is the category of S-schemes 
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of finite type. We refer to objects in this category just as S-schemes or even just as 
schemes.

We also fix a regular coherent coefficient ring Λ.

Definition 2.9. For any scheme X, the category of motives over X is defined as

DM(X) := DM(X)Λ := ModMΛ(SH(X)),

the category of modules, in the stable A1-homotopy category, over the motivic ring 
spectrum MΛ representing motivic cohomology (with coefficients in a commutative ring 
Λ).

Building on the seminal work of Morel–Voevodsky [42], the category SH was developed 
by Ayoub [9]. Building on the work of many people including Bloch, Cisinski, Déglise, 
Geisser, and Levine, the ring spectrum MZ (for schemes over a Dedekind ring) was 
introduced by Spitzweck [52] (see the introduction there for further references). For any 
commutative ring Λ (we will mostly use Z and fields), this gives a ring spectrum MΛ
by scalar extension. A key asset of these categories is the six functors formalism, which 
has been developed by Voevodsky [22], Ayoub [9,10], Cisinski–Déglise [19], and in an 
∞-categorical form by Khan [35], building upon work of Gaitsgory–Rozenblyum [29]. In 
[46, Appendix A], this was extended to allow for a coherent handling of monoidal aspects, 
including projection formulas. We briefly recall this extension (which just adds an ε to the 
previously existing literature): let Schft,×

S → Fin∗ be the symmetric monoidal category 
associated to with the Cartesian monoidal structure on Schft

S . Let Schft,×,∨
S → Finop

∗ be 
the associated dual fibration. The opposite of that map encodes the usual symmetric 
monoidal structure on (Schft

S )op. In order to encode *- and !-functoriality at the same 
time, one uses the concept of correspondences. This can be done either using the (∞,2)-
categorical method due to Gaitsgory–Rozenblyum [29] or, as mentioned in Remark 2.10, 
using an (∞,1)-categorical construction due to Liu–Zheng [40]. Referring to [29] for a 
full discussion, we only point out that Corr := Corr(Schft,×,∨

S )proper
sep,all is an (∞, 2)-category 

whose objects are the objects in Schft,×
S (i.e., sequences of objects X := (X1, . . . , Xn)

with Xi ∈ Schft
S ). In this category, 1-morphisms from X to Y are spans Y g← Z

f→ X, 
with f = (fi : Zi → Xi) being a collection of separated maps (i.e., the image of f in 
Fin∗ is an identity map) and g being an arbitrary map. In Corr, 2-morphisms between 
two 1-morphisms Y ← Z → X and Y ← Z ′ → X are maps Z z→ Z ′ (fitting into the 
obvious commutative diagrams) that map to an identity in Fin∗, and whose components 
Zi

zi→ Z ′
i are proper. There is a symmetric monoidal structure on Corr which on the level 

of objects is given by concatenating sequences of objects. Then there is a lax symmetric 
monoidal functor

DM∗
! : Corr → PrSt

Λ (2.3)

whose value at some scheme X is the category DM(X) mentioned before.
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Remark 2.10. Among other things, this functor encodes the following data.

• For a separated map f and any map g, there are two composable morphisms in Corr:

X ×Y Z
g′

f ′

X

f

X

Z
g

Y

Z

The evaluation of DM∗
! at the top right correspondence is a functor f∗ : DM(Y ) →

DM(X), the one for the lower correspondence is a functor g! : DM(Z) → DM(Y ). 
The functoriality of DM∗

! thus encodes the base-change formula

f∗g! = g′!f
′ ∗.

• The functors f! and f∗ admit right adjoints denoted f ! and f∗, respectively.
• Any S-scheme Y is a commutative comonoid in Schft

S (since the Cartesian structure is 
used), with comultiplication given by the diagonal Y Δ→ Y ×SY . The lax monoidality 
of DM∗

! then yields a functor

DM(Y ) ⊗ModΛ DM(Y ) �→ DM(Y ×S Y ).

Appending Δ∗, we obtain that DM(Y ) becomes a symmetric monoidal ∞-category. 
The monoidal unit in DM(Y ) is denoted Λ (recall that Λ is the coefficient ring).

• Any map f : X → Y in Schft
S turns X into a Y -comodule, with coaction given by 

X
Δ→ X ×S X

f×id→ X ×S Y . The lax monoidality of DM∗
! implies that DM(Y ) is a 

DM(X)-module by means of f∗. With these structures, f is a map of Y -coalgebras 
so that the evaluation of the lax symmetric monoidal functor DM∗

! encodes the 
projection formula

f!(A⊗ f∗B) = f!A⊗B (A ∈ DM(X), B ∈ DM(Y )).

• The construction of the functor in (2.3) rests on (∞,2)-categorical foundations in 
[29] that are not fully proven in [29] None of the results in this paper rely on these 
(∞,2)-categorical assertions. In fact, there is an alternative construction of an ∞-
categorical six functor formalism due to Liu–Zheng [40]. In [40], the authors define 
an (∞,1)-category CorrLZ whose objects are sequences X = (X1, . . . , Xn) of schemes 
as above, and whose morphisms are certain Cartesian squares. They establish a lax 
symmetric monoidal functor (Dét)∗! : CorrLZ → PrSt

Λ encoding the exterior product, 
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*-pullbacks and !-pushforwards on derived categories of étale torsion sheaves. This 
construction can be adapted verbatim to motives. This leads to a lax symmetric 
monoidal functor

DM∗
! : CorrLZ → PrSt

Λ , (2.4)

that again ensures all the functorial properties of motives mentioned in the preceding 
items. This is all we need in this present paper.

Remark 2.11. In addition to the functoriality encoded by correspondences, DM satisfies 
the following properties:

(1) Homotopy invariance: for the projection p : A1
X → X, the following functor is fully 

faithful:

p∗ : DM(X) → DM(A1
X).

(2) Tate twists: for the projection q : Gm,X → X, the object Λ(1) := fib(q!q!Λ → Λ)[1]
is ⊗-invertible with dual denoted Λ(−1). We put Λ(n) := Λ(1)⊗n for n ∈ Z.

(3) Localization: for a closed immersion i : Z → X with complement j : U → X, the 
(co)units of the adjunctions above assemble into so-called localization homotopy fiber 
sequences

i!i
! → id → j∗j

∗, (2.5)

j!j
! → id → i∗i

∗. (2.6)

(4) Algebraic cycles: for X smooth over S, the Hom-groups are given by higher Chow 
groups of Bloch (extended to schemes over Dedekind rings by Levine):

HomHo(DM(X))(Λ,Λ(n)[m]) =: Hm(X,Λ(n)) = CHn(X, 2n−m)Λ.

For later use, we note that this group vanishes for m > 2n.

For the purpose of defining reduced motives, it will be useful to uniformly keep track of 
the presence of the DM(S)-action on all categories of motives. Indeed, the category Schft

S

identifies with ModS(Schft
S ), since S is the monoidal unit. Applying the lax symmetric 

monoidal functor DM, we conclude (from (2.3) or (2.4)) the existence of a functor

DM∗
! : Corr → ModDM(S)(PrSt

Λ ).
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2.3. Motives on ind-schemes

Recall (e.g., from [45, Appendix A]) that a presheaf X : Schop
S → Sets is called 

an ind-scheme if X = colimi Xi is the filtered colimit of finite-type S-schemes Xi and 
the transition maps are closed immersions. The functor DM! := DM∗

! |Schft,sep
S

(schemes 
with only separated maps) can be used to define motives on ind-schemes by a left Kan 
extension [45, §2.3]:

(Schft
S )sep

DM! ModDM(S)(PrSt)

(IndSchft
S )sep

DM!

(2.7)

In other words, for an ind-scheme X = colimXi, the category of motives is given by

DM(X) = colim DM(Xi),

where the transition functors in this colimit are !-pushforwards along the closed embed-
dings Xi → Xj . By definition, DM(X) is a presentable stable ∞-category, and a module 
over DM(S). The subcategory DM(X)c of compact objects can be thought of as the 
union of the categories DM(Xi)c, again using (the fully faithful) !-pushforwards to form 
the union.

For a map f : X → Y between ind-schemes, there is always an adjunction f! :
DM(Y ) � DM(X) : f !, while the (adjoint) functors f∗ and f∗ only exist for schematic 
maps, see [45, Theorem 2.4.2] for further details.

2.4. Tate motives as modules over a graded E∞-algebra

In this section, we recall the description of the category of Tate motives as a cate-
gory of modules. This presentation will be crucial for the definition of reduced motives. 
Everything in this section is due to Spitzweck [51]; we include certain proofs for the 
convenience of the reader.

Definition 2.12. For a scheme X, the category DTM(X) of Tate motives is defined to be 
the presentable subcategory of DM(X) generated by the Λ(n) for n ∈ Z.

Lemma 2.13. ([51, Proposition 4.2], [52, §8]) There is a commutative monoid in 
grDM(S), denoted PMΛ, whose underlying object in grDM(S) is the one whose com-
ponent in graded degree r is Λ(r).

Thus, morally speaking PMΛ =
⊕

n∈Z Λ(n). Using the notation of Section 2.1.1, there 
is an adjunction
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L : grModΛ � grDM(S) : R,

whose left adjoint L satisfies Λ �→ Λ. Here we use that S is connected so that 
EndDM(S)(Λ, Λ) = Λ. Since R is lax symmetric monoidal, it preserves commutative 
monoids, so that

A := R(PMΛ) (2.8)

is a commutative monoid in the ∞-category grModΛ. Roughly, one can think of it as 
a Z-graded commutative differential graded Λ-algebra. (Unless Q ⊂ Λ, this is only a 
rough analogy since it is not usually possible to strictify a commutative algebra in the 
∞-category ModΛ to a commutative dg-algebra.)

We compute A as follows: by adjunctions we have

Ar = MapsModΛ
(Λ, Ar)

= MapsgrModΛ
(Λ〈−r〉, A)

= MapsgrDM(S)(Λ〈−r〉,PMΛ)

= MapsDM(S)(Λ, (PMΛ)r)

= MapsDM(S)(Λ,Λ(r)).

(2.9)

Thus the r-th graded component Ar is a chain complex whose n-th cohomology is 
Hn(S, Λ(r)).

By the universal property of the category of modules [39, §3.3.3], the functor R induces 
a limit-preserving, accessible functor, again denoted R, which by the adjoint functor 
theorem admits a left adjoint:

L̃ : ModA(grModΛ) � ModPMΛ(grDM(S)) : R.

The left adjoint L̃ satisfies L̃(A ⊗ V ) = PMΛ ⊗ L(V ) for V ∈ grModΛ. In particular, L̃
is symmetric monoidal, so that L̃(A) = PMΛ. Henceforth, we abbreviate

ModA := ModA(grModΛ).

(If A can be represented by a Z-graded commutative differential graded Λ-algebra, the 
homotopy category of ModA is the category of graded complexes with an A-module 
structure, up to quasi-isomorphism.)

Lemma 2.14. ([51, Theorem 4.5], [52, Corollary 8.3]) The composite

F := ev0 ◦ L̃ : ModA
L̃→ ModPMΛ(grDM(S)) ev0→ DM(S)

induces an equivalence of symmetric monoidal ∞-categories
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ModA
∼= DTM(S), A〈r〉 �→ Λ(r). (2.10)

Proof. The category grModΛ is compactly generated by the objects Λ〈r〉, r ∈ Z. The 
category ModA(grModΛ) is then compactly generated by A〈r〉 = A ⊗Λ〈r〉. Our functor 
sends A〈r〉 to ev0(PMΛ〈r〉) = evr(PMΛ) = Λ(r), which is a compact object in DM(S).

Any functor in PrSt
ω (compactly generated presentable stable ∞-categories and contin-

uous functors preserving compact objects) is fully faithful iff its restriction to compact 
objects is fully faithful. Thus, in our case it is enough to check full faithfulness of F
restricted to our family of generators, A〈r〉. That is, we have to ensure that the mapping 
spectra

MapsModA(grModΛ)(A〈s〉, A〈r〉) → MapsDM(S)(Λ(s),Λ(r))

are isomorphic. Indeed, the left hand side is just MapsModΛ
(Λ, (A〈r−s〉)0) = As−r. This 

is precisely the right hand mapping space by design of A, cf. (2.9).
Given the full faithfulness of F , we obtain an equivalence of ∞-categories since the 

generators of DTM(S), Λ(n) = F (A〈n〉) are in the image. Being a composite of the 
symmetric monoidal functor L̃ and the lax symmetric monoidal ev0, F is lax symmetric 
monoidal. It remains to observe that the lax structural maps F (M ⊗A M ′) → F (M) ⊗Λ
F (M ′) are isomorphisms. Since both sides are colimit-preserving in M and M ′, it suffices 
to check this for generators of the form M = A〈r〉, M ′ = A〈r′〉, where it is clear. �
Definition 2.15. A commutative monoid object A in grModΛ is called of Tate type if

(1) the unit map

Λ → A

induces an isomorphism after applying ev0, i.e., Λ → A0 is an isomorphism (in ModΛ, 
i.e., a quasi-isomorphism of chain complexes), and

(2) the evaluations Ar = 0 for r < 0.

Lemma 2.16. The algebra A := R(PMΛ) is of Tate type.

Proof. The n-th cohomology of the complex

Ar = MapsDM(S)(Λ,Λ(r))

is isomorphic [52, Corollary 7.19] to

Hn(SZar,M(r)),
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where M(r) is the complex that has in cohomological degree i the cycles zr(−, 2r−i) ⊗ZΛ. 
For r < 0, this complex is defined to be zero, and for r = 0, this complex is isomorphic 
to Λ, whose cohomology is just Λπ0(S) 2.8= Λ. �
Lemma 2.17. [51, Lemma 4.10] For an algebra of Tate type A, the map

A → A0 ∼= Λ(:= Λ〈0〉)

is part of a natural map of commutative monoid objects in grModΛ. We call this map 
the augmentation map.

Proof. The inclusion C → grC in graded degree 0 is symmetric monoidal, so that its 
adjoint ev0 is lax symmetric monoidal: we have ev0(X ⊗ Y ) =

⊕
i+j=0 eviX ⊗ evjY →

ev0X ⊗ ev0Y . The restriction of ev0 to the subcategory of graded objects X satisfying 
evrX = 0 for r < 0, is a symmetric monoidal functor since for such X the above maps 
are isomorphisms. �
3. Reduced motives

In this section, we define reduced motives and establish their basic functoriality. The 
general idea of reduced motives is to suppress all motivic cohomology coming from the 
base scheme S (i.e., the one that is present in A in (2.8)), but leave the remainder of the 
motivic formalism intact.

We continue to fix a base scheme S and a coefficient ring Λ as in Convention 2.8.

3.1. Definition and immediate properties

For any S-scheme X, the (stable ∞-)category DM(X) of motives on X is a module 
over DM(S) by means of the pullback f∗ along the structural map f : X → S. By 
restriction, DM(X) and also its full subcategory DTM(X), become DTM(S)-modules. 
This module structure is compatible with *-pullback (resp. !-pushforward) along arbi-
trary (resp. separated) maps and therefore continues to exist for X being an ind-scheme 
(cf. Section 2.2).

On the other hand, using the augmentation map A → Λ (Lemma 2.17), we also have 
the following functor (which one can think of as modding out the augmentation ideal, 
but the functor is derived):

DTM(S)
(2.10)∼= ModA(grModΛ) Λ⊗A−→ ModΛ(grModΛ) = grModΛ.

Definition 3.1. Let X/S be a scheme or an ind-scheme. The category of reduced motives
on X is defined as

DMr(X) := DMr(X)Λ := DM(X)Λ ⊗DTM(S)Λ grModΛ. (3.1)
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Here the tensor product is formed in ModDTM(S)(PrSt), cf. Section 2.1.1 for notation. In 
the same vein, the category of reduced Tate motives is defined as

DTMr(X) := DTMr(X)Λ := DTM(X)Λ ⊗DTM(S)Λ grModΛ.

Remark 3.2.

(1) In order to form the above tensor product, it is not enough to work with the mere 
triangulated category associated to DM(X). Instead, a higher enhancement such as 
a dg-category structure or an ∞-category structure is needed.

(2) By definition,

DTMr(S) = grModΛ,

which is in contrast with DTM(S) = ModA. Under this equivalence, the functor 
M �→ M(1) (induced from DTM(S)) corresponds to N �→ N〈1〉, i.e., shifting the 
Z-grading at the right-hand category.

(3) The notion of reduced motives depends on the choice of the base scheme S: for X/S, 
the natural map

DM(X) ⊗DTM(S) grModΛ → DM(X) ⊗DTM(SpecZ) grModΛ

usually won’t be an equivalence. Indeed,

DTM(S) ⊗DTM(SpecZ) grModΛ ∼= ModAS
⊗ModASpecZ

grModΛ = ModAS⊗ASpecZ
Λ

won’t be equivalent to grModΛ since in general AS ⊗ASpecZ
Λ �= Λ.

(4) For length reasons we focus our attention in this paper on reduced motives on ind-
schemes. For applications such as an integral Satake equivalence, categories such as 
MTMr(L+G\LG/L+G), i.e. mixed reduced Tate motives on the double quotient of 
the loop group by the positive loop group, have been constructed in [21]. Comparison 
results such as, say, Proposition 5.7 carry over unchanged to reduced motives in 
that generality. In order to capture genuine equivariant phenomena (with integral 
coefficients), one may use DM(X) := ModZX

(SH(X)) for certain nice stacks, see 
[32,36], or for arbitrary stacks the limit-extended category SH�(X), see [36].

Recall that grModΛ is a symmetric monoidal ∞-category. By definition, the symmetry 
isomorphisms obey the Koszul sign rule with respect to the cochain degree, while a shift 
in the graded direction (i.e., 〈−〉) causes no sign: the map

(Λ〈n〉[m]) ⊗ (Λ〈n′〉[m′]) ∼= (Λ〈n′〉[m′]) ⊗ (Λ〈n〉[m])
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is multiplication by (−1)mm′ . For example, the symmetric algebra over a Λ-module of 
the form M ∼= Λ

⊕
I [−1]〈n〉 is the exterior algebra on Λ

⊕
I (placed in degree −1). The 

following lemma will allow us to do concrete computations with reduced Tate motives.

Lemma 3.3. Let X = An
S ×S (Gm,S)m. Then there is an equivalence

DTM(X) = ModSym(Λ(−1)[−1])⊗m(DTM(S))

and therefore an equivalence

DTMr(X) = ModSym(Λ〈−1〉[−1])⊗m(grModΛ). (3.2)

Thus, a reduced Tate motive on X (with Λ-coefficients) is an object R in the ∞-category 
grModΛ, together with m anticommuting maps

R → R〈+1〉[+1].

Proof. Let us abbreviate E := (Sym Λ(−1)[−1])
⊗

m = Sym(Λ〈−1〉[−1]
⊕

m). Let q :
X → S be the structural map. The adjunction

q∗ : DTM(S) = ModA � DTM(X) : q∗

is monadic: q∗ is conservative since q∗Λ(n) is a family of generators of DTM(X). By 
the Barr–Beck monadicity theorem [39, Theorem 4.7.3.5], DTM(X) is the category of 
algebras over the monad DTM(S) given by the endofunctor q∗q∗− 

∼=← q∗q
∗Λ ⊗Λ −. It 

remains to construct an isomorphism (in CAlg(DTM(S)))

α : E → q∗q
∗Λ.

By the Sym-forgetful adjunction, such a map is the same as a collection of m maps (in 
DTM(S))

Λ(−1)[−1] → q∗q
∗Λ

or, yet equivalently, m maps in DTM(X) : Λ(−1)[−1] → Λ. These maps arise via the 
*-projections along pri : X → Gm,S from maps in DTM(Gm,S) of the form Λ(−1)[−1] →
Λ. We may thus assume m = 1 to construct the map. The unit maps of adjunctions for 
*-pullbacks vs. *-pushforwards, Λ → q∗q∗Λ → p∗p∗Λ ∼= Λ (p : A1

S → S, cf. Remark 2.11) 
exhibit Λ as a retract of q∗q∗Λ, with complement Λ(−1)[−1]. This yields a map α as 
stated. It is then standard, using the Künneth formula for motivic cohomology of Z ×S

Gm,S , that α is an isomorphism.
Under the equivalence DTM(S) = ModA, E maps to (SymA〈−1〉[−1])

⊗
m = A ⊗Λ

(Sym Λ〈−1〉[−1])
⊗

m =: A ⊗ F . Therefore, using generalities about tensor products of 
module categories [17, Proposition 4.1]
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ModE(DTM(S)) = ModA⊗F (ModA) = ModA ⊗grModΛ ModF (grModΛ).

This implies the claim about DTMr(X). �
Remark 3.4. There is Koszul dual description of the category DTMr(X) for X = An

S ×S

(Gm,S)m. Let R := Sym(Λm〈1〉) ∈ grModΛ and consider the full subcategory

Modf
R(grModΛ) ⊂ ModR(grModΛ)

generated by the objects Λ〈i〉 for i ∈ Z by finite colimits and retracts.
Equivalently, Modf

R(grModΛ) consists precisely of the R-modules whose underlying 
Λ-module lies in grPerfΛ. One direction of this statement is clear. To see the other 
direction, we claim that any complex M of graded R-modules whose underlying graded 
Λ-module is perfect can be built from the simple R-modules Λ(i)[j] inductively. For this, 
one starts with the highest non-zero degree part of M , say N , which exists since M
is a perfect complex as a Λ-module. The action of R on M restricts to N and factors 
through the augmentation map R → Λ for degree reasons. Hence, any resolution N by 
the Λ-modules Λ(i)[j] is also a resolution of R-modules, which proves the claim.

The objects Λ(i)[i] ∈ DTMr(X)c generate a weight structure (which is distinct from 
the one in Definition and Lemma 4.18), whose heart is denoted by C. On the other hand, 
C is also the heart of a weight structure on Modf

R generated by the objects Λ〈i〉[i]. Since 
we have

HomDMr(X)(Λ,Λ(i)[i + n]) = HomModf
R
(Λ,Λ〈i〉[i + n]) = 0 for all n �= 0

the weight complex functor provides equivalences of categories

DTMr(X)c ∼→ Chb(C) ∼← Modf
R(grModΛ).

The category of reduced motives has the following further immediate properties. In 
the entire lemma, DM can be replaced by DTM at will.

Lemma 3.5.

(1) DMr(X) is a presentable stable ∞-category. It is a module over grModΛ, i.e., col-
loquially speaking, it is a Λ-linear category equipped with a Z-grading. In particular 
its homotopy category is a Z-graded triangulated category having all coproducts and 
products.

(2) There is a natural functor, called reduction functor

r : DM(X) → DMr(X). (3.3)
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If (Mi)i∈I is a set of compact generators of DM(X) that is stable under applying 
Tate twists (in positive and negative direction), then the objects r(Mi) form a set of 
compact generators of DMr(X). For two compact objects M, M ′ ∈ DM(X), we have

MapsDMr(X)(r(M), r(M ′)) = MapsDM(X)(M,M ′) ⊗A Λ. (3.4)

Here at the left Maps denotes the enriched mapping object in grModΛ (by regarding 
DMr(X) as a grModΛ-module), and the Maps at the right denotes the enriched 
mapping object in ModA, by virtue of DM(X) being a ModA-module. In particular,

MapsDMr(X)(r(M), r(M ′)) = ev0

(
MapsDM(X)(M,M ′) ⊗A Λ

)
. (3.5)

Proof. (1): This holds by the very definition of the Lurie tensor product.
(2): The functor

Λ ⊗A − : (DTM(S) =)ModA → grModΛ

is DTM(S)-linear, where we regard the right-hand category as a module over ModA via 
the augmentation map A → Λ. The reduction functor arises by applying DM(X) ⊗DTM(S)
− to this functor.

The category ModA is a rigid symmetric monoidal ∞-category with compact genera-
tors given by A〈n〉 (n ∈ Z). Thus, by [29, Chapter 1, §10.3, §10.5.7], objects of the form 
M�Λ〈n〉 ∈ DMr(X) with M running over a set of compact generators of DM(X) gener-
ate DMr(X). The claim about the enriched mapping objects holds by Proposition 10.5.8 
there. �

The description of generators and (3.5) immediately shows:

Corollary 3.6. DTMr(X) is the presentable stable full subcategory of DMr(X) generated 
by r(Λ(n)), n ∈ Z. Henceforth, we will denote these objects just by Λ(n), if there is no 
ambiguity between DM(X) and DMr(X).

For later purposes we unwind the enriched mapping object

MapsDM(X)(M,M ′) ∈ ModA.

By definition, for each r ∈ Z

MapsModA(grModΛ)(A〈r〉,MapsDM(X)(M,M ′)) = MapsDM(X)(A〈r〉 ⊗M,M ′).

In the right-hand side A〈r〉 acts by a positive Tate twist, so the right-hand side is 
MapsDM(X)(M, M ′(−r)).
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The left-hand side equals MapsgrModΛ
(Λ〈r〉, MapsDM(X)(M, M ′)), which equals the 

(−r)-th component of Maps. In other words,

evrMapsDM(X)(M,M ′) = MapsDM(X)(M,M ′(r)). (3.6)

3.2. Functoriality for reduced motives

The formation X �→ DMr(X) is part of a six-functor formalism that we now describe. 
In a nutshell, all functors (f∗, f∗, f!, f !, ⊗, Hom) still exist for the categories DMr(X)
and are compatible with the usual ones under the reduction functor.

Recall from Section 2.2 that the formation X �→ DM(X) is part of a functor

DM∗
! : Corr := Corr(Schft,×,∨

S )proper
sep,all → ModDTM(S). (3.7)

Proposition 3.7.

(1) There is a lax symmetric monoidal functor

(DMr)∗! : Corr → grPrSt
Λ

whose evaluation at X/S is the category DMr(X) considered above.
(2) The reduction functors DM(X) → DMr(X) are then part of a natural transformation

DM∗
! → (DMr)∗!

between lax symmetric monoidal functors Corr(Schft
S ) → PrSt

Λ ; for concreteness we 
forget the ModA-module structure on both functors at this point.

Remark 3.8. In parallel to Remark 2.10, the existence of the functor (DMr)∗! encodes, in 
particular: for each map f : X → Y for S, there are functors

f∗ : DMr(Y ) → DMr(X), (3.8)
f! : DMr(X) → DMr(Y ). (3.9)

Moreover, base-change and projection formulas as in Remark 2.10 again hold for DMr. 
In addition, the second statement says that these functors are compatible with the usual 
*-pullback and !-pushforward under the reduction functors.

In the same vein, reduced motives on ind-schemes are defined by composing the functor 
DM! in (2.7) with − ⊗DTM(S) grModΛ.

Proof. We define (DMr)∗! to be the composition

Corr(Schft
S ) DM∗

!−→ ModDTM(S)(PrSt)
grModΛ⊗DTM(S)−−→ grPrSt

Λ (:= ModgrModΛ(PrSt)).
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By definition, this reproduces the categories DMr(X) when evaluating at X/S. Be-
ing the composite of the lax symmetric monoidal DM∗

! and the symmetric monoidal 
grModΛ ⊗DTM(S) −, (DMr)!∗ is also lax symmetric monoidal.

The claimed natural transformation then results from the unit map of the adjunction

grModΛ ⊗DTM(S) − : ModDTM(S)(PrSt) � grPrSt
Λ

(and further applying the forgetful functor from the left-hand category to PrSt
Λ induced 

by the map (of commutative algebra objects) ModΛ
〈0〉→ grModΛ). �

Proposition 3.9. For each map of S-schemes f : X → Y the functors

f∗ : DM(X) → DM(Y ),

f ! : DM(Y ) → DM(X)

are DTM(S)-linear. The resulting functors

f∗ ⊗DTM(S) grModΛ, f
! ⊗DTM(S) grModΛ

are the right adjoints of the functors in (3.8), (3.9).

Proof. Since DTM(S) is rigid (being compactly generated by the dualizable objects Λ(n), 
n ∈ Z), this is an instance of Lemma 2.1. �

Given that the functors on reduced motives arise by base-changing the usual ones, the 
abstract features of DM carry over to DMr. Because of their importance for our purposes 
below, we specifically spell out homotopy invariance and localization.

Corollary 3.10. (Homotopy invariance for reduced motives) For a projection p : An
X →

X, the functor

p∗ : DMr(X) → DMr(An
X)

is fully faithful. In particular, this restricts to an equivalence of categories

p∗ : DTMr(X)
∼=→ DTMr(An

X).

Proof. Indeed, the unit map id → p∗p
∗ is an isomorphism since both p∗ and p∗ arise 

from their usual counterparts by base-changing along DTM(S) → grModΛ. �
Corollary 3.11. (Localization for reduced motives) For a diagram consisting of a closed 
immersion i and its complementary open immersion j
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Z
i→ X

j← U

we have a recollement situation, i.e., adjoints

j! 	 j! = j∗ 	 j∗,

i∗ 	 i∗ = i! 	 i!,

such that j∗ and i∗ are fully faithful and such that i∗j! = i!j∗ = 0.

Proof. This also follows directly from Lemma 2.1, since the full faithfulness of j∗ is 
equivalent to the counit map j∗j∗ → id being an isomorphism. The remaining statements 
are similar. �
4. Stratified mixed Tate motives

In this section, we restrict the construction of reduced motives to specific geometric 
situations, namely stratified ind-schemes X =

⋃
Xw where the Xw are affine spaces or 

cells. We also restrict our attention to specific (reduced) motives, namely those motives 
M such that all M |Xw

are (reduced) Tate motives.

4.1. Stratified Tate motives

In this section we recall some standard conventions on stratified (ind-)schemes, as in 
[45, §3] or [54, §4] for schemes and define (reduced) stratified Tate motives.

Definition 4.1. A stratified ind-scheme over S is a map of ind-schemes over S

ι : X+ = �
w∈W

Xw → X

such that ι is bijective on the underlying sets, each stratum Xw is a smooth S-scheme, 
the restriction to each stratum ιw := ι|Xw

: Xw → X is a quasi-compact immersion and 
the topological closure of each stratum ι(Xw) is a union of strata.

A stratification is cellular (resp. affine) if each stratum Xw is isomorphic to Anw

S ×
Gmw

m,S (resp., to Anw

S ).

Definition and Lemma 4.2. ([54, §4] for schemes, [45, 3.1.11] for ind-schemes) A stratified 
(ind-)scheme is Whitney–Tate if ι∗ι∗ΛX+ ∈ DTM(X+). In this case, the following full 
subcategories of DM(X) are the same:

(1) The subcategory consisting of objects M such that ι∗wM ∈ DTM(Xw) for all w ∈ W .
(2) The subcategory consisting of objects M such that ι!wM ∈ DTM(Xw) for all w ∈ W .
(3) The presentable stable subcategory generated by (ιw)!Λ(n) for all w ∈ W , n ∈ Z.
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(4) The presentable stable subcategory generated by (ιw)∗Λ(n) for all w ∈ W , n ∈ Z.

We call this subcategory the category of stratified Tate motives, denoted by 
DTM(X, X+) or just DTM(X) if the presence of the stratification is clear from the 
context.

Definition and Lemma 4.3. [45, §3.1] Let (X, X+) and (Y, Y +) be two stratified (ind-)
schemes and f : X → Y a schematic map of finite type, that is stratified (i.e., f is 
compatible with the stratification and maps each Xw to some stratum Yw′). We say f is a 
Whitney–Tate map, if f∗ preserves stratified Tate motives (f∗ always does; cf. Section 2.3
for the functor formalism of motives on ind-schemes). Equivalently (since all strata are 
smooth over S), f! preserves Tate motives.

Example 4.4. [27, Proposition 3.8] If a stratified map as above is such that for each w, 
the restriction f |Xw

: Xw → Yw′ is a surjective linear map between affine spaces, then f
is a Whitney–Tate map. We call such maps affine-stratified.

Definition 4.5. We say that an (ind-)scheme (X, X+) with an affine stratification admits 
affine-stratified resolutions if for every stratum Xw there is a resolution of singularities 
πw : X̃w → Xw (i.e., πw proper, X̃w smooth over S) that is an isomorphism over Xw

and such that X̃w admits an affine stratification and πw is affine-stratified.

Remark 4.6. The condition in Definition 4.5 is motivated by similar conditions in [14, 
Lemma 4.4.2]. It ensures that an affine stratification is Whitney–Tate [54, Proposition 
A.2]. It will also play a rôle in considerations related to pointwise purity, see the proof 
of Proposition 4.24.

Example 4.7. The flag variety X = G/B with its stratification in B-orbits fulfills the 
condition in Definition 4.5. The closure of the B-orbits in X are are Schubert varieties 
and admit affine-stratified resolutions by Bott–Samelson varieties, see [30].

Definition and Lemma 4.8. Let ι : X+ → X be a Whitney–Tate stratified (ind-)scheme. 
The category of reduced stratified Tate motives is defined as

DTMr(X,X+) := DTM(X,X+) ⊗DTM(S) grModΛ.

If the choice X+ is clear from the context, we abbreviate this by DTMr(X).
Equivalently, DTMr(X, X+) is the full subcategory of DMr(X) characterized by the 

properties analogous to Definition and Lemma 4.2(1)–(4), exchanging DTM by DTMr. 
The reduction functor DM(X) → DMr(X), see (3.3), restricts to a functor

r : DTM(X,X+) → DTMr(X,X+).
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Proof. For an ind-scheme X = colimXi, we have

DTM(X,X+) = colim DTM(Xi, Xi
+)

by [45, Remark 3.1.3]. The transition functors in this filtered colimit are DTM(S)-linear, 
so that we may assume X is a scheme.

The description of generators of DTMr(X, X+) as in (3) and (4) is a general con-
sequence of the Lurie tensor product, as in Lemma 3.5(2). The descriptions via the 
two pullback functors ι∗w and ι!w is then a consequence of the localization formalism for 
reduced motives (Corollary 3.11). �
Remark 4.9. Denote by DM(r) either DM or DMr. The subcategory of compact objects in 
DTM(r)(X, X+) is the subcategory of DM(r)(X) generated, by means of finite colimits, 
shifts, and retracts by motives of the form ιw,∗Λ(n) (equivalently, ιw,!Λ(n)).

The category DTM(r)(X, X+) is compactly generated, i.e., DTM(r)(X, X+) =
Ind(DTM(r)(X, X+)c), so that for many purposes it suffices to consider compact ob-
jects. However, for an ind-scheme such as the affine Grassmannian X = GrG

p→ S, the 
dualizing motive ωGrG := p!Λ ∈ DTM(r)(GrG) fails to be compact, so it is useful to have 
a presentable category of stratified Tate motives.

Sheaves on stratified spaces can be concisely described as follows:

Remark 4.10. Sheaves on stratified spaces can be described using lax limits [2, Exam-
ple 4.1.6]: if X+ = U � Z

j�i→ X is a stratification by an open and a closed stratum, 
then

DM(X) = laxlim
(
DM(U) i∗j∗→ DM(Z)

)
.

Indeed, this is an equivalent formulation of the localization property of motives (Re-
mark 2.11), according to which a motive on X is equivalent to a triple

(MU ,MZ ,MZ → i∗j∗MU )

with MU ∈ DM(U), MZ ∈ DM(Z). The stratification is Whitney–Tate iff i∗j∗ preserves 
Tate motives, in which case we have

DTM(X) = laxlim
(
DTM(U) i∗j∗→ DTM(Z)

)
.

We can then apply Lemma 2.2 and compute the category of stratified reduced Tate 
motives as

DTMr(X) = laxlim
(
DTMr(U) i∗j∗→ DTMr(Z)

)
.
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For example, objects in DTMr(P1, A1 � {∞}) are described by triples

(M,M ′ ∈ grModΛ,M
′ → M ⊗ (Λ ⊕ Λ〈−1〉[−1])) .

4.2. Perverse t-structures

In this section, we define a perverse t-structure on the categories of (reduced) stratified 
Tate motives on (ind-)schemes with cellular Whitney–Tate stratification. We begin with 
the case of a cell itself. The definition follows the usual convention for perverse sheaves 
on complex varieties, that is, it makes use of the middle perversity.

Definition and Lemma 4.11. Let X = An
S×SGm

m,S . There is a unique t-structure, referred 
to as the perverse t-structure, on DTMr(X) with heart

MTMr(X) := DTMr(X)t=0 ⊂ DTMr(X)

generated by coproducts and extensions of the objects Λ(q)[n + m] for q ∈ Z. This 
t-structure restricts to a t-structure on the subcategory of compact objects.

The same statements also hold true for the unreduced category DTM(X) if

(1) Λ = Q and
(2) S is the spectrum of a finite field, or a global field or the ring of integers in a global 

field.

Proof. For DTM(X)Q the statement follows from [37, Theorem 4.2]. The Beilinson–
Soulé vanishing condition on HomDM(X)(Q, Q(i)[n]) follows from the computations of 
algebraic K-theory of S due to Quillen, Borel, and Harder.

For DTMr(X), one can proceed along similar lines, using the computation of 
HomDTMr(X)(Λ, Λ(i)[n]) in Lemma 3.3. Alternatively, one may deduce the state-
ment using the equivalence between DTMr(X)c and the category Modf

R(grModΛ) for 
R := Sym(Λm〈1〉) mapping Λ(i) to Λ〈i〉, see Remark 3.4. Recall that the category 
Modf

R(grModΛ) consists of objects whose underlying Λ-module is perfect. Hence, it in-
herits a t-structure such that the forgetful functor to grPerfΛ is t-exact (with respect 
to the usual t-structure on grPerfΛ, cf. Example 2.7). This yields the existence of the 
desired t-structure on DTMr(X)c. This is the restriction of t-structure on DTMr(X)
using that this category is compactly generated by the objects Λ(i) in the heart. �
Remark 4.12. The t-structure on DTM(X) also restricts to compact objects for more 
general coefficient rings Λ. This is work in progress of Spitzweck–Uschogov, see also [51, 
Theorem 9.10.].
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Definition and Lemma 4.13. Let (X, X+) be an (ind-)scheme with a cellular Whitney–
Tate stratification. The perverse t-structure on DTMr(X, X+) is the t-structure glued 
from the perverse t-structures on the categories DTMr(Xw):

DTMr(X,X+)t≤0 = {M ∈ DTMr(X,X+) | ι∗M ∈ DTMr(X+)t≤0} and

DTMr(X,X+)t≥0 = {M ∈ DTMr(X,X+) | ι!M ∈ DTMr(X+)t≥0}.

This t-structure restricts to a t-structure on the subcategory DTMr(X, X+)c of com-
pact objects. Again, under the conditions (1) and (2) from Definition and Lemma 4.11
above, the same statement holds for DTM(X). In this event, the reduction functor 
r : DTM(X) → DTMr(X) is t-exact. We denote the respective hearts of this t-structure 
by

MTM(r)(X,X+) ⊂ DTM(r)(X,X+)

and refer to it as the category of stratified mixed (reduced) Tate motives.

Proof. The t-structure is a routine consequence of the gluing formalism from [11]. The 
t-exactness of r holds since r commutes with ι∗ and ι!. �

In order to address whether the realization functor (2.2)

Db(MTMr(X,X+)c) → DTMr(X,X+)c

is an equivalence, we use tilting objects. This formalism was developed in the context 
of highest weight categories in [44]. See [12] for an account of tilting objects in the 
geometric setting. To apply this theory, it is necessary to have standard and costandard 
objects in the category MTMr(X, X+)c, which necessitates that the functor ι∗ is t-exact. 
In the context of �-adic sheaves this is true by Artin vanishing, which implies that the 
pushforward along affine maps is t-exact. In our context we have to impose this as an 
additional condition.

Definition 4.14. Let (X, X+) be an (ind-)scheme with an affine Whitney–Tate stratifica-
tion such that the functor ι∗ is t-exact. Let Λ be a PID (principal ideal domain, e.g., a 
field).

(1) We call the objects

Δw(i) = iw,!Λ(i)[dimXw] and ∇w(i) = iw,∗Λ(i)[dimXw]

the standard and costandard objects, respectively.
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(2) An object T ∈ MTMr(X, X+) is called a tilting object if it admits finite filtrations 
such that the associated graded objects are finite direct sums of direct summands of 
standard and costandard objects, respectively. Tilting objects span a full subcategory 
denoted by Tilt(X) ⊂ MTMr(X, X+)c.

Lemma 4.15. Let (X, X+) be as in Definition 4.14. If M, N ∈ MTMr(X)c admit a 
standard and costandard filtration, respectively, then

HomDMr(X)(M,N [j]) = 0 for all j �= 0.

Proof. The group HomDMr(X)(ιv,!Λ[dim(Xv)], ιw,∗Λ[dim(Xw)](i)[j]) can be computed 
as HomDMr(Xv)(Λ, ι!vιw,∗Λ[dim(Xw) − dim(Xv)]](i)[j]). This vanishes if v �= w by base 
change. For v = w it vanishes for j �= 0 since DTMr(Xv) = grModΛ. The statement 
follows by an induction on the length of the filtration. �
Proposition 4.16. Let (X, X+) be as in Definition 4.14 and let Λ be a PID.

(1) For each stratum ιw : Xw → X, there is a tilting object Tw ∈ Tilt(X) supported on 
Xw and ι∗wTw = Λ[dim(Xw)].

(2) The realization functor (2.2) is an equivalence of categories

Db(MTMr(X,X+)c)
∼=→ DTMr(X,X+)c.

Proof. (1): We may assume X is a scheme since the closure Xw of any stratum is a 
scheme and the functor ιw,! : DTMr(Xw) → DTMr(X) for ιw : Xw → X is t-exact 
and preserves tilting objects. Now, the argument in [6, Proposition B.3] for constructible 
sheaves on complex varieties, stratified by affine spaces, with integral coefficients trans-
lates unchanged to our setting.

(2): The realization functor is fully faithful on the additive subcategory C of 
Db(MTMr(X)c) generated by 

⋃
n∈Z Tilt(X)[n]: by Lemma 4.15 there are no non-trivial 

extensions between tilting objects in DTMr(X) and thus in particular there are no 
non-trivial extensions in MTMr(X). By the five lemma the realization functor is also 
fully faithful on the stable category generated by C. By (1), tilting objects generated 
DTMr(X)c. Therefore, they also generate MTMr(X)c, and hence Db(MTMr(X)c). �
Remark 4.17. Weight structures provide a convenient perspective on tilting objects. 
Namely, there is a weight structure w′ called tilting weight structure on DTMr(X, X+)c
such that

Tilt(X) = MTMr(X,X+)c ∩ DTMr(X,X+)c,w
′=0.

For a single stratum X = An
S , the heart of the tilting weight structure on DTMr(X)c is 

generated by the objects Λ(r)[n] for r ∈ Z under finite direct sums and direct summands. 
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In general, the tilting weight structure on DTMr(X, X+)c is obtained by gluing. We refer 
to [3, Section 2] for a very thorough discussion on the relation of perverse t-structure 
and the tilting weight structure.

In the situation of Proposition 4.16, the realization functor for the perverse t-structure 
and the weight complex functor for tilting weight structure w′ yield a chain of equiva-
lences

Db(MTMr(X,X+)c)
∼=→ DTMr(X,X+)c

∼=→ Chb(Tilt(X)).

4.3. Weight structures

Similarly to mixed �-adic sheaves, there is a notion of weights on the category of 
motives DM(X). Weight structures yield a convenient language for this yoga of weights. 
The Chow weight structure on DM(X) is the weight structure whose heart is generated 
by direct summands of motives π∗Λ where Y is regular and π : Y → X is proper. This 
necessitates resolution of singularities, and thus entails restrictions on the coefficient ring 
Λ, e.g. for S = SpecZ one needs to take Λ = Q. For schemes with cellular stratifications, 
such as the ones appearing in geometric representation theory, one can construct weight 
structures for all Λ more directly. As before, let DTM(r) denote either the category of 
Tate motives or the category of reduced Tate motives.

Definition and Lemma 4.18. Let X = An
S ×S Gm

m,S or a disjoint union of such schemes. 
There is a unique weight structure, referred to as the Chow weight structure, on 
DTM(r)(X) whose heart

DTM(r)(X)w=0 ⊂ DTM(r)(X)

is generated by direct sums and direct summand by the objects Λ(q)[2q] for q ∈ Z. This 
weight structure is Ind-extended (Lemma 2.6) from a weight structure on the subcategory 
of compact objects. For example the heart DTMr(X)w=0 of reduced motives on X = An

S

is equivalent to the ordinary category of graded projective Λ-modules.

Proof. To see this, one has to show that HomDTMr(X)(Λ, Λ(q)[2q][i]) = 0 for all q ∈
Z and i > 0. This follows from the computation of motivic cohomology of X, as in 
Lemma 3.3. �

As for the perverse t-structure in Definition and Lemma 4.13 the Chow weight struc-
ture on DTM(r)(X, X+) can be obtained via gluing and the reduction functor preserves 
weights since it commutes with ι∗ and ι!.

Definition and Lemma 4.19. Let (X, X+) be a cellular Whitney–Tate stratified (ind-)
scheme. The Chow weight structure on DTM(r)(X) := DTM(r)(X, X+) is the weight 
structure glued from the Chow weight structures on the strata DTM(r)(Xw). That is
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DTM(r)(X,X+)w≤0 = {M ∈ DTM(r)(X,X+) | ι∗M ∈ DTM(r)(X+)w≤0} and

DTM(r)(X,X+)w≥0 = {M ∈ DTM(r)(X,X+) | ι!M ∈ DTM(r)(X+)w≥0}.

This weight structure is Ind-extended from a weight structure on the subcategory 
DTM(r)(X, X+)c of compact objects. The reduction functor r : DTM(X, X+) →
DTMr(X, X+) is weight exact.

Next, we compare the heart of the Chow weight structure for reduced and non-reduced 
Tate motives on a point.

Proposition 4.20. The following are equivalent:

(1) The Chow groups CHn(S, Λ) with Λ-coefficients vanish for n > 0. (This is the case 
if for example S = Spec k for a field k or S = SpecZ.)

(2) The restriction of the reduction functor to weight-zero objects,

r : Ho(DTM(S)w=0) → Ho(DTMr(S)w=0)

is an equivalence of (additive) categories.
(3) For any M≤0 ∈ DTM(S)w≤0 and M≥0 ∈ DTM(S)w≥0, the map

HomDM(S)(M≤0,M≥0) → HomDMr(S)(r(M≤0), r(M≥0))

is an isomorphism.

Proof. In (2), being an equivalence is equivalent to being fully faithful since the gener-
ators Λ(n)[2n] are in the image by design. This immediately shows (3) ⇒ (2).

Condition (3) is equivalent to having an isomorphism

HomDM(S)(Λ,Λ(n)[2n + i])
∼=→ HomDMr(S)(Λ,Λ(n)[2n + i]) (4.1)

for all n ∈ Z and all i ≥ 0. Indeed, by Lemma 2.6(1), DTM(S)w≤0 is the smallest 
subcategory stable under extensions and coproducts and containing Λ(n)[2n + i] for 
i ≤ 0. The dual description for DTM(S)w≥0 and the compactness of Λ ∈ DTM(S)
reduces us to this special case.

The right-hand side in (4.1) identifies with HomgrModΛ(Λ, Λ〈n〉[2n + i]), which van-
ishes for all n �= 0 (even for all i ∈ Z). The left hand side always vanishes for i > 0, 
cf. Remark 2.11(4). This shows all the remaining implications (1) ⇔ (2) ⇒ (3), since 
HomDM(S)(Λ, Λ(n)[2n]) = CHn(S, Λ) always vanishes for n < 0. �

In the following discussion we will need to impose an additional pointwise purity 
condition.
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Definition 4.21. For ? ∈ {∗, !}, a motive M ∈ DTM(r)(X, X+) is called ?-pointwise pure
if ι?M ∈ DTM(r)(X+)w=0.

Proposition 4.22. Let (X, X+) be an (ind)-scheme with an affine stratification. Let 
M, N ∈ DTMr(X, X+)w=0 be ∗-pointwise and !-pointwise pure, respectively. Then for 
all i �= 0

HomDMr(X)(M,N [i]) = 0.

Proof. The case of a single stratum X = An
S follows from the explicit description 

DTMr(An
S) ∼= DTMr(S) = grModΛ. The general case follows by induction as in [27, 

Lemma 3.16]. �
Proposition 4.23. Assume that CHn(S, Λ) = 0 for n > 0. Let (X, X+) be an (ind)-
scheme with an affine stratification and M, N ∈ DTMr(X, X+)c,w=0 be ∗-pointwise and 
!-pointwise pure, respectively. Then reduction gives an isomorphism

HomDM(X)(M,N) → HomDMr(X)(r(M), r(N)).

Proof. The case of a single stratum X = An
S follows from Proposition 4.20 since 

DTM(r)(An
S) ∼= DTM(r)(S) by homotopy invariance. We may replace X by the support of 

M and N which is a scheme given that they are compact object. Let i : Z → X ← U : j
be the inclusion of a closed stratum and its open complement. Then, the localization 
sequence yields the following diagram of exact sequences of Hom-groups:

Hom(j∗M, j!N [−1]) Hom(i∗M, i!N) Hom(M,N) Hom(j∗M, j!N) 0

0 Homr(i∗M, i!N) Homr(M,N) Homr(j∗M, j!N) 0.

Here we abbreviated Homr(X, Y ) = HomDMr(r(X), r(Y )). The two zeroes in the right 
column come from the axioms of a weight structure. The zero in the bottom left follows 
from Proposition 4.22. The second vertical arrow is an isomorphism by Proposition 4.20. 
The fourth vertical arrow is an isomorphism by induction using that ?-restriction pre-
serves ?-pointwise purity. The five lemma implies that the third vertical arrow is also an 
isomorphism. �
Proposition 4.24. Assume that CHn(S, Λ) = 0 for n > 0. Let (X, X+) be an (ind-)scheme 
with an affine stratification that admits affine-stratified resolutions, see Definition 4.5. 
Then the reduction functor r is equivalent to the weight complex functor on DTM(X). 
More precisely, we have a commutative diagram with equivalences as indicated:
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DTM(X,X+)c Chb(Ho(DTM(X,X+)c,w=0))

DTMr(X,X+)c Chb(Ho(DTMr(X,X+)c,w=0)).

r �

∼

Proof. The diagram is commutative by the functoriality of the weight complex functor 
[50, Corollary 3.0.4].

Choose affine-stratified resolutions πw : X̃w → Xw. Let Ew = πw,!Λ. Then Ew is 
supported on Xw. By an argument as in [27, Theorem 4.5] the objects Ew(n)[2n] for 
n ∈ Z are pointwise pure and generate DTM(r)(X, X+)c under finite colimits and re-
tracts and generate DTM(r)(X, X+)c,w=0 under finite direct sums and retracts. Now 
Proposition 4.23 implies that the right arrow is an equivalence. The bottom arrow is 
an equivalence using Proposition 4.22, the fact that both sides are generated by the 
Ew(n)[2n] and the five lemma. �
4.4. Independence of the base scheme

A useful feature of reduced motives being defined in arbitrary characteristic is that it 
becomes possible to switch the ground scheme S, for example one can mediate between 
characteristic 0 and characteristic p base schemes.

Proposition 4.25. Consider a cartesian diagram

X ′+ ι′

s+

X ′

s

S′

s0

X+ ι
X S.

Here s0 is a map of base schemes and ι is a cellular Whitney–Tate stratification on an 
(ind-)scheme X, and ι′ gives the pulled back stratification on X ′ := X ×S S′. Assume 
that the stratifications are such that the natural map

s∗ι∗ → ι′∗(s+)∗ (4.2)

is an isomorphism of functors.
Then the stratification ι′ on X ′ is again cellular Whitney–Tate and the natural functor

s∗ : DTMr(X) → DTMr(X ′)

is an equivalence. Here the reductions refer to the respective base schemes, i.e. over S
for X and over S′ for X ′ (cf. Remark 3.2(3)).
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Example 4.26. The condition (4.2) holds for partial (affine) flag varieties [46, Lemma2.12]. 
Moreover, it can be shown that the conclusion of the theorem holds for all (ind-)schemes 
with an affine stratification that admit affine-stratified resolutions, see Definition 4.5.

Remark 4.27. This statement can be compared with, say, the independence of the motivic 
Satake category of the base scheme [46, Corollary 6.6.]. In both cases a certain semi-
simplification has been performed, for DMr(X) in the guise of applying − ⊗A Λ; for 
the Satake category by definition. The difference is that the construction here works for 
stable ∞-categories of motives, which is useful for applications involving the full stable 
(or triangulated) category of sheaves on, say, G/B, as opposed to the subcategory of 
perverse sheaves.

Proof. The category DTM(X ′) is generated by objects of the form (ι′w)!Λ(n), for a 
stratum ι′w : X ′

w → X. These are clearly in the image of s∗, so it remains to check full 
faithfulness.

The Whitney–Tate condition for X ′, i.e., ι′∗ι′ ∗ΛX′ ∈ DTM(X ′, X ′+) holds since 

ι′∗ι
′ ∗Λ = ι′∗ι

′ ∗s∗Λ 
(4.2)= (s+)∗ι∗ι∗Λ, which is in DTM(X ′+) since ι∗ι∗Λ ∈ DTM(X+).

As for the claimed equivalence, first suppose X is a cell, i.e., X = An
S × (Gm,S)m. In 

this case the claim holds by Lemma 3.3. Then, an induction reduces us to the case of 
two strata j : X0 ⊂ X (open) and i : X1 ⊂ X (closed), in which case we use Lemma 2.2
(cf. Remark 4.10):

DTMr(X,X+) = laxlim
(
DTMr(X0)

i∗j∗−→ DTMr(X1)
)
.

The functor s∗ induces an equivalence on each term in the lax limit, and moreover 
commutes with i∗j∗ by assumption. Thus it induces an equivalence DTM(X, X+) →
DTM(X ′, X ′+) as claimed. �
5. Comparison results

In this section, we show that the category of reduced stratifies Tate motives recovers, 
refines and unifies the existing approaches to mixed sheaves in the literature, namely 
(unreduced) Tate motives over S = SpecFq (for Λ = Q or Fp), semisimplified Hodge 
motives (over S = SpecC), graded �-adic sheaves (over S = SpecFp) and Achar–Riche’s 
mixed category (over S = SpecC).

In addition to the discussion after Theorem 1.2, let us include a few more technical 
comments: the usage of Q�-adic sheaves in Ho–Li’s approach of course allows to use the 
whole �-adic arsenal including the existence of perverse t-structures and Artin vanishing. 
The motivic approaches in [27,54], as well as the one presented here, typically require 
a closer look at the geometric objects at hand. The restriction to (ind-)schemes with a 
cellular or affine stratification or presence of the condition that the pushforward along 
inclusions of strata is t-exact (see Definition 4.14) are a consequence of this state of affairs. 
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However, for applications in geometric representation theory this is no drawback since 
the combinatorics encoded in the geometry of partial (affine) flag varieties eventually 
requires using such properties anyway.

Our comparison results allow to bridge the gap between these different approaches in 
the literature:

Theorem 5.1. Let X/ SpecZ be a cellular stratified Whitney–Tate (ind-)scheme with spe-
cial fiber Xp := X ×SpecZ SpecFp and generic fiber XC := X ×SpecZ SpecC. Suppose 
that the condition in (4.2) is satisfied for s : SpecFp → SpecZ. Then a choice of an 
isomorphism Q�

∼= C yields equivalences

ShvT,gr(Xp) ∼= DTM(Xp, X
+
p )C ∼= DTMH(XC, X+

C) ∼= DTMr(X,X+)C.

If the stratification is affine and admits affine-stratified resolutions, then there are equiv-
alences

DAR
mix(XC)Fp

∼= DTM(Xp, X
+
p )cFp

∼= DTMr(X,X+)cFp
.

Example 5.2. The assumptions on X and s are satisfied for X a partial flag variety G/P

or a partial affine flag variety such as the affine Grassmannian GrG or the affine flag 
variety FlG associated to a reductive group G/ SpecZ.

Proof. The condition in (4.2) is automatic for η : SpecC → SpecZ, since it is a pro-
étale map. Thus, Proposition 5.6, Proposition 5.7, and Proposition 4.25 yield a number 
of equivalences of categories

DTMr(Xp)Q�

∼=

DTMr(X)Q�s∗

∼= ∼= DTMr(X)C
η∗

∼= DTMr(XC)C

∼=

ShvT,gr(Xp,Q�) DTMH(XC).

The second chain of equivalences similarly follows from Proposition 5.3 and Proposi-
tion 5.11. �
5.1. Motives over finite fields

Proposition 5.3. Let S = SpecFq or SpecFq and Λ = Q or Λ = Fp. For any scheme 
X/S, the reduction functor is an equivalence of categories:

r : DM(X)Λ
∼=→ DMr(X)Λ.

The same holds true for stratified Tate motives on stratified ind-schemes.
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Proof. For Λ = Q or Fp the unit map Λ → A is a (graded) quasi-isomorphism, i.e., 
Hn(Ar) = Hn(S, Λ(r)) = 0 for r �= 0 or n �= 0. Indeed, for Λ = Q, this group is 
isomorphic to K2r−n(S)(r)Q which vanishes by Quillen’s computation of K-theory of finite 
fields (and continuity of K-theory in case S = SpecFq). For Λ = Fp, this again vanishes 
as a consequence of Geisser–Levine’s computation of mod-p motivic cohomology, see [27, 
Corollary 2.53]. By the above quasi-isomorphism the reduction functor DTM(S, Λ) →
grModΛ is an equivalence, giving our claim. �
Remark 5.4. For any field k �= Fq, Fq, the reduction functor r : DM(Spec k)Q →
DMr(Spec k)Q is not an equivalence, since H1(k, Q(1)) = k× ⊗ Q �= 0.

5.2. Comparison with semisimplified Hodge motives

Let S = SpecC and Λ = C. We will show that reduced Tate motives with complex 
coefficients reproduce the category of semisimplified Hodge motives due to Soergel and 
Wendt [54,53].

Recall the functor

SmAffop/S → Ch(Ind(MHSpol
Q )) grW→ Ch(Ind(HSpol,Z

C )).

The first functor maps any X/S to a complex of mixed Hodge structures whose n-th 
cohomologies are Deligne’s mixed Hodge structures on the Betti cohomology of the as-
sociated complex manifold Xan, Hn(Xan, Q) [23]. The functor grW : MHSpol

Q → grHSpol
C

takes a (polarized) mixed Hodge structure and associates to it the graded pieces of the 
weight filtration [54, Proposition 2.11]. This is an exact ⊗-functor (this uses complex 
coefficients). By [54, Proposition 2.11], this composite functor passes to a symmetric 
monoidal colimit-preserving functor, called the semisimplified Hodge realization functor

RH : DM(S) → D(Ind(grHSpol
C )).

This functor has a right adjoint R∗ which one uses to define

H := R∗C ∈ DM(S),HX := f∗H ∈ DM(X)C

for any scheme f : X → S. By the setup, HX is a commutative algebra object in 
DM(X), and one can consider DMH(X) := ModH(DM(X)). This category is called the 
category of semisimplified Hodge motives. Just as for DM, there is a six-functor formalism 
for DMH and a concomitant category of (stratified) Tate motives, which we denote by 
DTMH ⊂ DMH.

Proposition 5.5. Let X/S be a scheme. Then the functor RH induces a functor

RH,r : DMr(X) → DMH(X)
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compatible with the six functors on both sides.

Proof. Let A be defined as in (2.8). We will use the following remark: since the unit 
map 1 : C → A is a quasi-isomorphism in graded degree 0 any morphism A → C (in 
CAlg(grModΛ)) is uniquely determined by its restriction along the unit map, where it 
corresponds to a ring homomorphism C → C within the ordinary category of C-vector 
spaces.

According to [54, p. 361], the restriction of RH to Tate motives factors as

RH : DTM(S)C → DTMH(S)
∼=→ grModC.

Since RH is symmetric monoidal colimit-preserving functor it corresponds to a morphism 
A → C. By the above remark, it is determined by its restriction along the unit 1 : C → A, 
which is a simply the identity map idC.

On the other hand, by definition, the augmentation map a : A → C also has the 
property that its restriction along the unit map is idC. Therefore, the following two 
functors are equivalent:

RH ∼= (C ⊗a,A −) : DTM(S) → grModC.

Therefore, there is a functor

RH,r : DMr(X) = DM(X) ⊗DTM(S) grModC

→ DMH(X) ⊗DTMH(S) grModC = DMH(X). �
Proposition 5.6. Let (X, X+) be a scheme with a cellular Whitney–Tate stratification. 
Then there is an equivalence

DTMr(X,X+) DTMH(X,X+).RH,r
∼

Proof. Now using that X is Whitney–Tate, we can express DTM(X, X+) inductively 
as a lax limit of a diagram involving the categories DTM(Xw), as in Remark 4.10. By 
Lemma 2.2, tensoring with grModC preserves that lax limit. Thus, it suffices to prove 
the claim if X = An

S × Gm
m,S . By Lemma 3.3,

DTMr(X) = ModSym(C〈−1〉[−1])
⊗

m)(grModC).

The proof of Lemma 3.3 carries over to DTMH(X), using that Hi(Gan
m,C, C) = C(i) for 

i = 0, 1 and 0 otherwise. �
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5.3. Comparison with graded �-adic sheaves

Let S = SpecFq be a finite field. We compare reduced motives with the category of 
graded sheaves introduced very recently by Ho and Li [31]. For simplicity, we restrict our 
comparison result to the case of schemes, referring to Remark 3.2(4) for some comments 
on the case of stacks.

Let Shv(X) := Shv(X, Q�) be the ∞-category of ind-constructible Q�-adic sheaves on 
X. Let Shvm(X) be its full subcategory of ind-mixed complexes, i.e., filtered colimits of 
mixed complexes as introduced in [11]. For example, Shv(S) is the derived ∞-category 
of complexes of Q�-vector spaces equipped with a continuous action of Gal(Fq) and the 
compact objects in Shvm(S) are precisely those perfect complexes where the eigenvalues 
of Frob ∈ Gal(Fq) are algebraic numbers whose absolute value is a power of q 1

2 . The 
category Shvm(S) decomposes as a coproduct of the subcategories consisting of those 
complexes on which Frob has eigenvalues with absolute value q

n
2 , for n ∈ Z. In particular, 

there is a (colimit preserving, symmetric monoidal) forgetful functor

u : Shvm(S) → grModQ�
.

The category of graded sheaves is defined in [11] as:

Shvgr(X) := Shvm(X) ⊗Shvm(S) grModQ�
,

where the tensor product is formed using *-pullback along the structural map X → S, 
and the above-mentioned forgetful functor.

Proposition 5.7. Let X/S be a scheme. Then the �-adic realization functor R� : DM(X)
→ Shv(X) induces a realization functor

R�,r : DMr(X)Q�
→ Shvgr(X).

If X is a scheme with a cellular Whitney–Tate stratification, the restriction of Rr,� is an 
equivalence

R�,r : DTMr(X,X+)Q�

∼=→ ShvT,gr(X),

where the target is the full subcategory of Shvgr(X) consisting of graded stratified Tate 
sheaves, i.e., those graded sheaves F whose restrictions ι∗wF to the strata (ιw : Xw → X) 
lie in the presentable subcategory of Shvgr(Xw) generated by the sheaves Q�(n)Xw

for 
n ∈ Z.

Proof. Can be shown as in Proposition 5.6 using the standard calculation for H∗(X ×
SpecFq, Q�) for a single stratum X = An × Gm

m . �
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5.4. Comparison with parity sheaves and Achar–Riche’s mixed category

Let S = Spec(C). We compare (reduced) stratified Tate motives with parity sheaves
and Achar–Riche’s mixed category.

Parity sheaves are certain complexes of sheaves on a complex variety Xan defined via a 
condition on the vanishing of the stalk cohomology in even degrees, see [34]. In practice, 
parity sheaves arise from affine-stratified resolutions of singularities of stratum closures. 
If charΛ = 0, the decomposition theorem implies that parity sheaves are direct sums 
of intersection cohomology complexes. This is not true if charΛ = p and parity sheaves 
often take the role intersection cohomology complexes in modular representation theory, 
see for example [49,55].

Definition 5.8. Let (X, X+) be an (ind-)scheme with an affine Whitney–Tate stratifica-
tion. Denote by Shv(Xan) the stable ∞-category of sheaves of Λ-modules on Xan. The 
full subcategory of parity sheaves Par(Xan, X+) ⊂ Shv(Xan) consists of all objects E
for which the cohomology sheaves on the strata Hi(ι∗E) are constant, finitely generated, 
non-zero only in finitely many degrees and zero if i /∈ 2Z.

Remark 5.9. In [34], parity sheaves are defined in greater generality. Moreover, [34, Def-
inition 2.4] actually yields Par(Xan, X+) ⊕ Par(Xan, X+)[1].

We compare motives and parity sheaves via the Betti realization functor

RB : DM(X) → Shv(Xan)

which is compatible with the six functor formalism on both categories.

Proposition 5.10. Let (X, X+) be an (ind-)scheme with an affine stratification that admits 
affine-stratified resolutions, see Definition 4.5. Then Betti realization and the reduction 
functor give equivalences of additive categories

Ho(Par(Xan, X+)) Ho(DTM(X,X+)c,w=0) Ho(DTMr(X,X+)c,w=0)RB

∼
r
∼

Proof. The statement about the reduction functor is Proposition 4.24. The statement 
about RB can with shown with very similar arguments: First, the functor RB is fully 
faithful on pointwise pure objects. This can be reduced to the case of single stratum by 
induction. Second, both the categories of parity sheaves and weight zero reduced stratified 
Tate motives are generated by pushforwards of constant objects on the resolution of the 
strata which implies the essential surjectivity. �

In a nice formalism of mixed sheaves on spaces with an affine stratification, such as 
the formalism DTMr(X, X+) discussed here, the weight complex functor should yield an 
equivalence between mixed sheaves and the category of chain complexes of weight zero 
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objects. In [4, Section 7.2] and [7, Section 2.2] Achar–Riche take the ingenious approach 
of simply defining their mixed category

DAR
mix(Xan) := Chb(Ho(Par(Xan, X+)))

via this property. We immediately obtain the following comparison.

Proposition 5.11. Under the assumptions of Proposition 5.10 there is an equivalence

DTMr(X,X+)c DAR
mix(Xan).∼

Proof. Follows from Proposition 4.24 and Proposition 5.10. �
Remark 5.12. In [7, Section 2.3] Achar–Riche construct pullback and pushforward 
functors for DAR

mix in the case of locally closed inclusions of strata as well as affine-
stratified proper morphism. The functors are defined via taking compositions and ad-
joints of functors that preserve parity sheaves and can hence be applied pointwise on 
Chb(Ho(Par(Xan, X+))). Using that the weight complex functor commutes with weight 
exact functors [50] it can be shown that these functors admit a similar description for 
DTMr(X, X+) and are thereby compatible with the comparison in Proposition 5.11.
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